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Spheromak as a relaxed state with minimum dissipation
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The principle of minimum dissipation of energy is utilized to obtain the spheromak configuration as a
relaxed state. The Euler-Lagrange equation for the minimum dissipative relaxed state is solved in terms of
Chandrasekhar-Kendall eigenfunctions analytically generalized in the complex domain. This state is non-force-
free and further shows the nonconstancy of the ratio of parallel current to the magnetic field.
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I. INTRODUCTION

The spheromak is an axisymmetric compact toroidal m
netic confinement system, where the toroidal field is gen
ated primarily by internal plasma currents. It is characteriz
by the presence of both toroidal and poloidal fields of nea
equal strength. The analogy of spheromaks can be foun
the classical ‘‘Hill’s vortex’’ solutions of fluid dynamics.

The spheromak equilibrium configuration was charac
ized by Rosenbluth and Bussac@1# as a Taylor relaxed state
Taylor’s relaxation model@2# conjectured that the magnet
field in a plasma relaxes towards a state of minimum ene
subject to the constraint of constant magnetic helicity. In
closed system, the minimum-energy equilibrium satisfies
force-free equation“3B5lB with l5const. Many theo-
retical studies on spheromak equilibria and stability ha
been undertaken on the basis of this Taylor state predic
relaxed states with constantJi /B profile and zero pressur
gradient. Apart from this relaxation model, the spherom
equilibrium has also been shown to result from the numer
solutions @3# of Grad-Shafranov equation with or withou
pressure gradient. The formation, sustainment, and deca
spheromaks has also been extensively studied@4,5# through
numerical simulation of nonlinear equations of resist
magnetohydrodynamics.

Recently, a number of interesting experimental wo
@6–11# on spheromaks have revealed that with their co
pact, robust, and simple structures, the spheromaks hav
potential to develop into attractive fusion reactors. Seve
experimental projects like SSX in Swarthmore, SSPX
LLNL and others have been undertaken to explore this p
sibility. Earlier investigations~CTX in LANL ! have demon-
strated good confinement and achievedTe'400 eV @8,9#
and peak electron beta.20% @10,11#. Experimental mea-
surements on spheromak configurations show@12,13# non-
constant Ji /B profiles, which imply a deviation from
minimum-energy state. These features of spheromak~e.g.,
nonzero pressure gradient, nonconstant values ofJi /B, etc.!
are studied by solving the Grad-Shafranov equation@14–16#
and also through numerical simulation methods.

The theoretical approach to the spheromak has, so
been largely based on the view that the spheromak is es
tially a Taylor state. The Taylor state, being force free,
devoid of pressure gradient and essential confinement
1063-651X/2002/65~4!/046405~6!/$20.00 65 0464
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tures. The current interest in spheromak as a potential fu
reactor—which would necessarily confine a high be
plasma—motivates development of an appropriate theory
the spheromak that would predict the observed experime
features such as finite pressure gradient, nonconstant r
profile of Ji /B, etc., at least qualitatively.

A small amount of resistivity, ingrained in any realist
plasma, is essential to allow reconnective processes lea
to relaxation. In fact, dissipation, along with nonlinearity,
ubiquitous in systems evolving towards self-organized sta
and we believe that dissipation plays a decisive role in
self-organization of a system. In a search for the existenc
a relaxed state that would support a finite pressure grad
we invoke the principle of minimum dissipation. This
closely related to the principle of minimum entropy produ
tion of irreversible thermodynamics. The rationale behi
this principle is as follows. An isolated system with dissip
tion does not have a true minimum-energy state except
the trivial case of zero field. An absolutely stable relax
state of the plasma dictated by a minimum-energy princi
is, therefore, of little practical interest. On the other hand
fairly long-lived state can be observed in practice if the r
of dissipation is kept at minimum. A real turbulent plasm
with dissipation can indeed ‘‘relax’’ to such a state if sma
scale fluctuations stabilize within the resistive time sca
The rate of energy dissipation is sensitive to the highek
modes in the spectrum of turbulence and if dissipation le
to suppression of large-k modes, the local field distribution
becomes nearly stable with minimum dissipation rate. Th
in the relaxation process, small scale fluctuations are st
lized first leading to relatively stable~long-lived! states.

The principle of minimum dissipation, first utilized b
Montgomery and Phillips@16#, has been applied successful
to show that plasma can relax to a state other than force
and these classes of relaxed states can support a non
pressure gradient@17#, together with the field reversal fo
reversed field pinches.

In this work, we propose to identify the observed state
plasma in the actual ‘‘decaying’’ spheromak experime
with precisely this kind of a minimum dissipation state. W
derive the spheromak configuration from the equation
scribing the relaxed state of a magnetized plasma with m
mum dissipation so that it can be described as a ‘‘minim
dissipation constant helicity’’~MDCH! state, rather than a
©2002 The American Physical Society05-1
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‘‘minimum energy constant helicity’’ state. The spherom
when viewed as MDCH state, turns out to be a non-for
free state supporting a significant fraction of perpendicu
component of current and is closer to the present day exp
mental results.

II. EULER LAGRANGE EQUATION FOR MINIMUM
DISSIPATION STATE

The ohmic dissipation rate@16# for a magnetofluid is
given by

R5hE J2dt, ~1!

whereh is the plasma resistivity and the integral is over t
entire confinement region. Hereh is considered to be inde
pendent of space. The magnetic helicityK5*A•Bdt is an
invariant of motion in ideal magnetohydrodynamics~MHD!.
If the turbulence is sufficiently low,K still serves as a con
straint@18# as it decays at a slower rate compared toR. If the
energy dissipation rate given by Eq.~1! is minimized by
including helicity as a constraint on the minimizatio
through the use of Lagrange’s multiplierl̄, the following
variational equation is obtained:

dE ~hJ21l̄A•B!dt50. ~2!

On simplification, this leads to

E ~“3“3J2LB!•dAdV2 R F S“3J2
L

2
AD

3dA1J3“3dAG•dS50,

where the last term is a surface integral over the plas
boundary. The surface integrals vanish on considering va
tions dA that are zero at the bounding surface. The solut
of this variational problem is obtained as

“3“3“3B5LB, ~3!

whereL52l̄/h is a constant.

III. SPHEROMAK SOLUTIONS OF “Ã“Ã“ÃBÄLB

The spheromak solutions of the equation characteriz
the relaxed state of a magnetoplasma controlled by the p
ciple of minimum dissipation, can be constructed@17# as a
linear combination of the solutions of the force-free equat
analytically generalized to the complex domain. Finite b
spheromak equilibria has also been shown@19# to result from
the solutions of the static MHD equilibrium equation by
method involving the superposition of eigenfunctions of t
force-free equation belonging to real eigenvalues.

A general solution of the force-free equation can be giv
in terms of the Chandrasekhar and Kendall~CK! eigenfunc-
tions @20# that can be constructed by noting that any ma
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netic fieldB, being a solenoidal field can be decomposed i
its toroidal and poloidal components,

B5BT1BP. ~4!

The toroidal magnetic fieldBT and the poloidal magnetic
field BP are of the following form:

BT52“3~rC!, BP52“3“3~rF!, ~5!

wherer is a position vector,C andF are any scalar func-
tions of position. In general,C andF are distinct and will be
related to the toroidal and poloidal flux functions, respe
tively. It can be shown that ifB0 satisfies the equation fo
force-free fields, then

B052“3~rC0!2“3“3~rF0!, ~6!

and the following relations must hold:

~“21l2!C050, F05C0 /l. ~7!

In spherical coordinates (r ,u,f), C0 is obtained as

j m~lr !Pm
n ~cosu!einf, ~8!

where j m(lr ) is the spherical Bessel function,Pm
n (cosu) is

an associated Legendre function. The classical sphero
equilibrium solution, obtained by Rosenbluth and Bussac@1#
is given byn50,m51 state together with the boundary co
ditions B0•n50 at the plasma surface. This yieldsla
54.493, wherea is the radius. The lines of constant poloid
magnetic field are described by the poloidal flux functionx0,
given by

x05r sinu
]F0

]u
. ~9!

Thus for a force-free state, the toroidal flux function and t
poloidal flux function can be obtained from a single sca
function. However, this may not be the most general sit
tion.

The solution of Eq.~3! can be written as a linear comb
nation of the solutions for the force-free equation cor
sponding to complex eigenvalues

B5(
i 50

3

a iBi , ~10!

wherea i are constants to be fixed by boundary conditio
andBi obey the following equations:

“3Bi5lv iBi , ~11!

wherev is the complex cube root of unity. Following Eq
~6!, Bi can be expressed as

Bi52“3rC i2
v2i

l
“3“3~rC i !, ~12!

whereC i are solutions of
5-2
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~“21l2v2i !C i50. ~13!

Following the above, the solution given in Eq.~10! can be
expressed as

B52“3~rC!2“3“3~rF!, ~14!

with

C5(
i 50

2

a iC i , F5
1

l (
i 50

2

a iv
2iC i . ~15!

C i are the generalization in complex domain of the expr
sion given in Eq.~8! and are given by

C i5 j m~lv i r !Pm
n ~cosu!einf. ~16!

The expression forB given by Eq.~10! then satisfies Eq.~3!
for L5l3. The spheromak solutions of Eq.~3! are given by
the m50,n51 state as in the earlier case.

The corresponding flux functionx is given by

x~r ,u!5r sinu
]F

]u
52

r

l (
i 50

2

a iv
2i j 1~lv i r !sin2 u.

~17!

In terms of the poloidal flux functionx, B can be written as

B5~“x3“f!1r sinu
]C

]u
“f.

The different magnetic field components are obtained as

Br5
22

lr (
i 50

2

a iv
2i j 1~lv i r !cosu,

Bu5
1

lr (
i 50

2

a iv
2i

d

dr
@r j 1~lv i r !#sinu, ~18!

Bf52(
i 50

2

a i j 1~lv i r !sinu,

and are shown to lead to spheromak type solutions un
appropriate boundary conditions.

A. Boundary conditions

The boundary conditions are necessary to determine
eigenvaluela and for fixing the amplitudes of the non
Taylor part in the solution. Since it is known that the lowe
eigenvalue corresponds to states with minimum dissipat
we shall determine the lowest eigenvalue from the bound
conditions,

B•n50, J•n50 at r 5a, ~19!

where a is the boundary of the spheromak. These are
boundary conditions relevant to an insulating boundary at
edge of the spheromak. Also, the conditionJ•n50 atr 5a is
also equivalent toBf50 at r 5a as we are considering th
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spherically symmetric solutions withn50. This feature is
consistent with the classical spheromak solutions obtaine
Ref. @1#. The boundary conditions given by Eq.~19! can be
realized with three different choices, listed below.

~i! We choosea1 ,a2 to be complex. In order that the
fields may be real, this leads to the choicea25a1* , where
the asterisk refers to complex conjugate. In this case, the
boundary conditions are utilized to obtain the eigenvaluela
and also fix the complex ratio partly, say the real or t
imaginary part. We are then left with a choice for fixing th
other component of the ratio; this amounts to choosing
suitable mixture of the non-force-free part, consistent w
the prescribed boundary conditions.

~ii ! We can havea i to be purely imaginary. In this situa
tion, the boundary conditions determine the eigenvaluela
and the coefficients for the non-force-free part unambi
ously and it also leads toa25(a1)* . The imaginary part of
a i is given by

ImFa1

a0
G5

B0r

2 Im@B1r #
. ~20!

The lowest eigenvalue for this case is obtained asla
52.58.

~iii ! As a third choice, we takea i as real. This leads to
a15a2 in order that all fields are real. In this case also t
boundary conditions fix the eigenvaluela and the amplitude
of the non-force-free part completely. We get

j 1~la!12
a1

a0
Re@v2 j 1~lva!#50,

j 1~la!12
a1

a0
Re@ j 1~lva!#50. ~21!

The above equations when solved simultaneously lead to
lowest eigenvaluela56.09 and

a1

a0
52

B0r

2 Re@B1r #
U

r 5a

. ~22!

B. Location of magnetic axis andq values

The poloidal magnetic field of the spheromak,BP is given
by

BP5
1

r 2 sinu

]x

]u
er2

1

r sinu

]x

]r
eu .

The poloidal field has a neutral point at

]x

]u
50,

]x

]r
50.

Substituting forx from Eq. ~17!, the magnetic axis of this
configuration is described by the circleu5p/2 and r 5r 0,
wherer 0 is the solution of
5-3
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d

dr S r(
i 50

2

a i j 1~lv i r !D 50.

The safety factorq(x) has an important role in the stabilit
theory of plasmas and is defined by

q~x!5
1

2pE Bf

sinuBu
du52

1

2pE rBf

]x/dr
du. ~23!

In the following, we use Eq.~23! in order to obtain theq
values of aspheromak configuration at the magnetic axis
the edge.

1. q at the magnetic axis rÄr 0

At the magnetic axis,]x/]r 50 as seen from the defini
tion of magnetic axis. So in order to obtainq value at this
point we expandx about the magnetic axis in a Taylor
series@21#

x5x01
~r 2r 0!2

2

]2x

]r 2
1

~u2u0!2

2

]2x

]u2
, ~24!

wherex0 is the value ofx at the magnetic axis and the term
containing first derivatives vanish.

From the above, we can write

dx

dr
5~r 2r 0!

]2x

dr2 U
r 5r 0 ,u5u0

,

~r 2r 0!x rr 5Ax rr xuuA2~x2x0!

xuu
2~u2u0!2, ~25!

where

x rr 5
]2x

]r 2
, xuu5

]2x

]u2
.

With these substitutions,q0 is obtained as

q052
1

p

r 0(
i 50

2

a iv
2i j 1~lv i r 0!

Ax rr xuu

3E
p/2

3p/2 sinu

A2~x2x0!/xuu2~u2u0!2
du,

q052
1

p

r 0(
i 50

2

a iv
2i j 1~lv i r 0!

Ax rr xuu

sin21
~u2u0!

A2~x2x0!

xuu

U
21

1

.

Finally, the value ofq at the magnetic axis is given by
04640
nd

q05r 0

(
i 50

2

a i j 1~lv i r 0!

Ax rr xuu

. ~26!

The values ofa i as fixed by the boundary conditions a
used to obtain the value ofq0 for different values ofla.

2. q on the last flux surface, i.e.,xÄ0

The value ofq at the edge denoted byqa is obtained by
numerically integrating the following:

q5
1

2pE Bf

sinuBu
du5E Bf

r sinuBr
dr.

Substituting forBf ,Br from Eqs.~18!, we obtain

q~r 5a!5
l

4pE0

a
(
i 50

2

a i j 1~lv i r !

cosu(
i 50

2

a iv
2i j 1~lv i r !

dr. ~27!

We note that the last flux surface is given byx50, and
consists of two branches.

~i! On the first branch, which is the semicircle atr
5a, r is constant and the contribution to the above integ
vanishes.

~ii ! On the second branch, which is the diameter of
semicircle passing through the originr 50, cosu50,p, the
above integral can be numerically evaluated for different v
ues ofla using appropriate boundary conditions.

IV. RESULTS AND DISCUSSIONS

First, we implement the boundary conditions by choos
the ratio a1 /a0 as complex. As stated earlier, for a give
eigenvaluela, the real part of the complex ratio can b
uniquely fixed and there is a flexibility in choosing th
imaginary part~or vice versa!. For the eigenvaluela54.0,
the boundary conditions are satisfied with Re@a1 /a0#
50.02, Im@a1 /a0#50.03. In this situation, the magneti
axis lies atr /a50.66. Most interesting features about th
spheromak configuration shown in Fig. 1 are the followin
the profile ofm5J•B/B2, as plotted in Fig. 2, shows non
constant behavior with peaks lying outside the magnetic a

FIG. 1. The spheromak.
5-4
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From the figure, it is evident that the characteristics of
profiles obtained from the theory are more realistic a
qualitatively closer to the experimentally observed profiles
these quantities@12#. The corresponding profiles of the po
loidal (Bu) and toroidal (Bf) magnetic field components i
thez(5r cosu)50 midplane are shown in Fig. 3. The q va
ues range from 0.58 at the magnetic axis to 0.51 at the e
showing essentially, as expected, the distinctive low-sh
feature of the configuration.

If we take the coefficientsa i , i 51,2 as pure imaginary
the boundary conditions lead toa15(a2)* and both the ei-
genvalue anda i are determined uniquely. In this case, w
obtain the eigenvaluela52.58, and Re@a1 /a0#50,
Im@a1 /a0#50.33. The corresponding spheromak configu

FIG. 2. A plot of Ji /B and againstr /a in the z(5r cosu)50
midplane forla54.0.

FIG. 3. The profiles ofBu( . . . ) andBf( . . . ) againstr /a in the
z50 midplane forla54.
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tion is similar to the one obtained in the case ofla54.0.
Profiles for m5J•B/B2 are also similar with more pro
nounced peaks, i.e., the profiles show a nonconstant beha
of l profile with peaks closer to the magnetic axis that lies
r /a50.7. The values ofq0 andqa obtained from Eqs.~26!
and~27! are given by 0.143 and 0.142 showing an almost
q profile.

A very remarkable feature of the spheromak configurat
obtained from this theory is the existence of a double tor
dal configuration whena i for i 51,2 are chosen real. Thi
type of configuration was earlier described by Morikawa@3#
who obtained this from the solutions of a Grad-Shafran
equation by choosing a linearly varying pressure profile w
flux function. For reala i , i 51,2 the boundary conditions
give the eigenvaluela as 6.02, anda15a2520.012. Here
we have two magnetic axis locations, one atr /a50.44 and
the other atr /a50.8. This gives rise to a double spherom
configuration as shown in Fig. 4. The value ofq at the first
magnetic axis is 0.91 and at the edgeqa50.69.

A relaxation model based on the principle of minimu
rate of energy dissipation is set up leading to an Eu
Lagrange equation that supports non-force-free magn
fields. The solutions are obtained through an analytic ge
alization of the CK eigenfunctions to the complex domain
suitable choice of boundary conditions consistent with
perimental observations leads to solutions that represe
spheromak configuration. The boundary conditions fix
eigenvaluela and the amplitude of the non-Taylor part o
the solution, when the amplitude is completely real or ima
nary. However, for complex values of the amplitude, the
boundary conditions fix the eigenvalue and allow a fr
choice of one of the components of the complex amplitu

The Euler-Lagrange equation describing the minimu
dissipation-constant helicity relaxed state is essenti
solved in terms of force-free solutions expressed in the fo
of CK eigenfunctions generalized to the complex doma
However, a final non-force-free state results owing to sup
position of the force-free solutions belonging to different
genvalues. Static MHD equilibria supporting finite pressu
profiles can also be formed@19# by summing the orthonor-
mal basis functions of the force-free equation belonging
real eigenvalues. These finite beta spheromak equili
show departure from a single mode spectrum identified w
the Taylor state as pressure increases. The spheromak
figuration obtained in this work is shown to result from

FIG. 4. The double spheromak configuration.
5-5
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B. DASGUPTAet al. PHYSICAL REVIEW E 65 046405
relaxation mechanism based on minimum dissipation
principle. In analogy with Morse’s work@19#, the Euler-
Lagrange equation obtained by us has both force-free
non-force-free solutions as each of the force-free soluti
represented by Eqs.~11! is also a solution of Eq.~3!. While
the force-free solutions do not give rise to pressure profi
non-force-free states are capable of supporting a finite
or flows containing nonzero vorticity. While it is true tha
superposition almost always leads to non-force-free sta
the average beta obtained in the case of non-force-free s
depends strongly on the nature of superposition@19#. From
this perspective of the nature of pressure or flow profiles
may be said that the minimum dissipation rate principle p
vides a means of choosing the solutions to superpose
also has a definite influence on these profiles. Besides
self-organization mechanism based on the minimum diss
tion rate principle automatically leads to the necessity
finding such a superposed solution and is also represent
of the physical processes occurring in the magnetized pla
in presence of small but finite resistivity.

The spheromak configuration obtained here is a n
force-free relaxed state unlike Taylor’s force-free spherom
and hence supports a perpendicular component of cur
Since the magnetic fields given by Eqs.~18! and the associ-
ys

p
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ated current profiles have a nonvanishing“3(J3B),
theJ3B force tends to be balanced by a tensorial pressur
vortical flows. The plasma configuration considered here c
responds to that of a closed system in the absence of
external drive. Such an isolated system with dissipation
laxes to a fairly long-lived state when small-scale fluctu
tions stabilize on the resistive dissipation scale. However
exact representation of equilibrium in terms of flows or pre
sure through the use of stationary MHD equations may
be valid as in the case of sustained equilibrium in driv
systems.

The spheromak solutions obtained here also give rise
nonconstantl5J•B/B2 profiles. Many of the works trying
to model spheromak configuration in the framework of Ta
lor’s theory assume an arbitrary variation ofl with the flux
function c. We emphasize that this is mathematically inco
sistent, asl, introduced in the theory as a ‘‘Lagrange und
termined multiplier’’ in the variational calculation, is as
sumed to be a constant. The relaxed states obtained her
support a finite value of beta and hence will be more suita
to describe future spheromak experiments that are supp
to operate at higher beta and hence will exhibit signific
pressure profiles that modify the equilibrium magnetic fl
functions.
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